Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme
نویسندگان
چکیده
Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will lead to a heavy computational load especially at a higher level of subdivision. Adaptive subdivision is a method that subdivides only at certain areas of the meshes while the rest were maintained less polygons. Although adaptive subdivision occurs at the selected areas, the quality of produced surfaces which is their smoothness can be preserved similar as well as regular subdivision. Nevertheless, adaptive subdivision process burdened from two causes; calculations need to be done to define areas that are required to be subdivided and to remove cracks created from the subdivision depth difference between the selected and unselected areas. Unfortunately, the result of adaptive subdivision when it reaches to the higher level of subdivision, it still brings the problem with memory consumption. This research brings to iterative process of adaptive subdivision to improve the previous adaptive method that will reduce memory consumption applied on triangular mesh. The result of this iterative process was acceptable better in memory and appearance in order to produce fewer polygons while it preserves smooth surfaces. Keywords—Subdivision surfaces, adaptive subdivision, selection criteria, handle cracks, smooth surface
منابع مشابه
Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme
Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will lead to a heavy co...
متن کاملIterative process to improve simple adaptive subdivision surfaces method for triangular meshes
Problem statement: Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will...
متن کاملIterative Process to Improve Simple Adaptive Subdivision Surfaces Method for Triangular Meshes
Problem statement: Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will...
متن کاملAdaptive Rendering of Catmull-Clark Subdivision Surfaces based on Inscribed Approximation
Subdivision provides a powerful scheme for building smooth and complex surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive rendering reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes the rendering process more efficient. In this paper, we present a new...
متن کاملInscribed Approximation based Adaptive Tessellation of Catmull-Clark Subdivision Surfaces
Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive tessellation reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes the rendering process more efficient. In this...
متن کامل